Import kernel.h from U-Boot
authorHugo Villeneuve <hvilleneuve@dimonoff.com>
Tue, 4 Nov 2025 18:25:18 +0000 (13:25 -0500)
committerHugo Villeneuve <hvilleneuve@dimonoff.com>
Mon, 17 Nov 2025 15:36:11 +0000 (10:36 -0500)
Signed-off-by: Hugo Villeneuve <hvilleneuve@dimonoff.com>
src/kernel.h [new file with mode: 0644]

diff --git a/src/kernel.h b/src/kernel.h
new file mode 100644 (file)
index 0000000..44a639a
--- /dev/null
@@ -0,0 +1,285 @@
+#ifndef _LINUX_KERNEL_H
+#define _LINUX_KERNEL_H
+
+#include <linux/types.h>
+#include <linux/printk.h> /* for printf/pr_* utilities */
+#include <limits.h>
+
+#define STACK_MAGIC    0xdeadbeef
+
+#define REPEAT_BYTE(x) ((~0ul / 0xff) * (x))
+
+#define ALIGN(x,a)             __ALIGN_MASK((x),(typeof(x))(a)-1)
+#define ALIGN_DOWN(x, a)       ALIGN((x) - ((a) - 1), (a))
+#define __ALIGN_MASK(x,mask)   (((x)+(mask))&~(mask))
+#define PTR_ALIGN(p, a)                ((typeof(p))ALIGN((unsigned long)(p), (a)))
+#define IS_ALIGNED(x, a)               (((x) & ((typeof(x))(a) - 1)) == 0)
+
+#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
+
+/*
+ * This looks more complex than it should be. But we need to
+ * get the type for the ~ right in round_down (it needs to be
+ * as wide as the result!), and we want to evaluate the macro
+ * arguments just once each.
+ */
+#define __round_mask(x, y) ((__typeof__(x))((y)-1))
+#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
+#define round_down(x, y) ((x) & ~__round_mask(x, y))
+
+#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
+#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
+
+#define DIV_ROUND_DOWN_ULL(ll, d) \
+       ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
+
+#define DIV_ROUND_UP_ULL(ll, d)                DIV_ROUND_DOWN_ULL((ll) + (d) - 1, (d))
+
+#define ROUND(a, b)            (((a) + (b) - 1) & ~((b) - 1))
+
+#if BITS_PER_LONG == 32
+# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
+#else
+# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
+#endif
+
+/* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */
+#define roundup(x, y) (                                        \
+{                                                      \
+       const typeof(y) __y = y;                        \
+       (((x) + (__y - 1)) / __y) * __y;                \
+}                                                      \
+)
+#define rounddown(x, y) (                              \
+{                                                      \
+       typeof(x) __x = (x);                            \
+       __x - (__x % (y));                              \
+}                                                      \
+)
+
+/*
+ * Divide positive or negative dividend by positive divisor and round
+ * to closest integer. Result is undefined for negative divisors and
+ * for negative dividends if the divisor variable type is unsigned.
+ */
+#define DIV_ROUND_CLOSEST(x, divisor)(                 \
+{                                                      \
+       typeof(x) __x = x;                              \
+       typeof(divisor) __d = divisor;                  \
+       (((typeof(x))-1) > 0 ||                         \
+        ((typeof(divisor))-1) > 0 || (__x) > 0) ?      \
+               (((__x) + ((__d) / 2)) / (__d)) :       \
+               (((__x) - ((__d) / 2)) / (__d));        \
+}                                                      \
+)
+/*
+ * Same as above but for u64 dividends. divisor must be a 32-bit
+ * number.
+ */
+#define DIV_ROUND_CLOSEST_ULL(x, divisor)(             \
+{                                                      \
+       typeof(divisor) __d = divisor;                  \
+       unsigned long long _tmp = (x) + (__d) / 2;      \
+       do_div(_tmp, __d);                              \
+       _tmp;                                           \
+}                                                      \
+)
+
+/*
+ * Multiplies an integer by a fraction, while avoiding unnecessary
+ * overflow or loss of precision.
+ */
+#define mult_frac(x, numer, denom)(                    \
+{                                                      \
+       typeof(x) quot = (x) / (denom);                 \
+       typeof(x) rem  = (x) % (denom);                 \
+       (quot * (numer)) + ((rem * (numer)) / (denom)); \
+}                                                      \
+)
+
+/**
+ * upper_32_bits - return bits 32-63 of a number
+ * @n: the number we're accessing
+ *
+ * A basic shift-right of a 64- or 32-bit quantity.  Use this to suppress
+ * the "right shift count >= width of type" warning when that quantity is
+ * 32-bits.
+ */
+#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
+
+/**
+ * lower_32_bits - return bits 0-31 of a number
+ * @n: the number we're accessing
+ */
+#define lower_32_bits(n) ((u32)((n) & 0xffffffff))
+
+/**
+ * upper_16_bits - return bits 16-31 of a number
+ * @n: the number we're accessing
+ */
+#define upper_16_bits(n) ((u16)((n) >> 16))
+
+/**
+ * lower_16_bits - return bits 0-15 of a number
+ * @n: the number we're accessing
+ */
+#define lower_16_bits(n) ((u16)((n) & 0xffff))
+
+/*
+ * abs() handles unsigned and signed longs, ints, shorts and chars.  For all
+ * input types abs() returns a signed long.
+ * abs() should not be used for 64-bit types (s64, u64, long long) - use abs64()
+ * for those.
+ */
+#define abs(x) ({                                              \
+               long ret;                                       \
+               if (sizeof(x) == sizeof(long)) {                \
+                       long __x = (x);                         \
+                       ret = (__x < 0) ? -__x : __x;           \
+               } else {                                        \
+                       int __x = (x);                          \
+                       ret = (__x < 0) ? -__x : __x;           \
+               }                                               \
+               ret;                                            \
+       })
+
+#define abs64(x) ({                            \
+               s64 __x = (x);                  \
+               (__x < 0) ? -__x : __x;         \
+       })
+
+/*
+ * min()/max()/clamp() macros that also do
+ * strict type-checking.. See the
+ * "unnecessary" pointer comparison.
+ */
+#define min(x, y) ({                           \
+       typeof(x) _min1 = (x);                  \
+       typeof(y) _min2 = (y);                  \
+       (void) (&_min1 == &_min2);              \
+       _min1 < _min2 ? _min1 : _min2; })
+
+#define max(x, y) ({                           \
+       typeof(x) _max1 = (x);                  \
+       typeof(y) _max2 = (y);                  \
+       (void) (&_max1 == &_max2);              \
+       _max1 > _max2 ? _max1 : _max2; })
+
+#define min3(x, y, z) min((typeof(x))min(x, y), z)
+#define max3(x, y, z) max((typeof(x))max(x, y), z)
+
+/**
+ * min_not_zero - return the minimum that is _not_ zero, unless both are zero
+ * @x: value1
+ * @y: value2
+ */
+#define min_not_zero(x, y) ({                  \
+       typeof(x) __x = (x);                    \
+       typeof(y) __y = (y);                    \
+       __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
+
+/**
+ * clamp - return a value clamped to a given range with strict typechecking
+ * @val: current value
+ * @lo: lowest allowable value
+ * @hi: highest allowable value
+ *
+ * This macro does strict typechecking of lo/hi to make sure they are of the
+ * same type as val.  See the unnecessary pointer comparisons.
+ */
+#define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
+
+/*
+ * ..and if you can't take the strict
+ * types, you can specify one yourself.
+ *
+ * Or not use min/max/clamp at all, of course.
+ */
+#define min_t(type, x, y) ({                   \
+       type __min1 = (x);                      \
+       type __min2 = (y);                      \
+       __min1 < __min2 ? __min1: __min2; })
+
+#define max_t(type, x, y) ({                   \
+       type __max1 = (x);                      \
+       type __max2 = (y);                      \
+       __max1 > __max2 ? __max1: __max2; })
+
+/**
+ * clamp_t - return a value clamped to a given range using a given type
+ * @type: the type of variable to use
+ * @val: current value
+ * @lo: minimum allowable value
+ * @hi: maximum allowable value
+ *
+ * This macro does no typechecking and uses temporary variables of type
+ * 'type' to make all the comparisons.
+ */
+#define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
+
+/**
+ * clamp_val - return a value clamped to a given range using val's type
+ * @val: current value
+ * @lo: minimum allowable value
+ * @hi: maximum allowable value
+ *
+ * This macro does no typechecking and uses temporary variables of whatever
+ * type the input argument 'val' is.  This is useful when val is an unsigned
+ * type and min and max are literals that will otherwise be assigned a signed
+ * integer type.
+ */
+#define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
+
+/*
+ * swap - swap value of @a and @b
+ */
+#define swap(a, b) \
+       do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
+
+/**
+ * container_of - cast a member of a structure out to the containing structure
+ * @ptr:       the pointer to the member.
+ * @type:      the type of the container struct this is embedded in.
+ * @member:    the name of the member within the struct.
+ *
+ */
+#define container_of(ptr, type, member) ({                     \
+       const typeof( ((type *)0)->member ) *__mptr = (ptr);    \
+       (type *)( (char *)__mptr - offsetof(type,member) );})
+
+/*
+ * check_member() - Check the offset of a structure member
+ *
+ * @structure: Name of structure (e.g. global_data)
+ * @member:    Name of member (e.g. baudrate)
+ * @offset:    Expected offset in bytes
+ */
+#define check_member(structure, member, offset) _Static_assert( \
+       offsetof(struct structure, member) == (offset), \
+       "`struct " #structure "` offset for `" #member "` is not " #offset)
+
+#define __find_closest(x, a, as, op)                                   \
+({                                                                     \
+       typeof(as) __fc_i, __fc_as = (as) - 1;                          \
+       typeof(x) __fc_x = (x);                                         \
+       typeof(*a) const *__fc_a = (a);                                 \
+       for (__fc_i = 0; __fc_i < __fc_as; __fc_i++) {                  \
+               if (__fc_x op DIV_ROUND_CLOSEST(__fc_a[__fc_i] +        \
+                                               __fc_a[__fc_i + 1], 2)) \
+                       break;                                          \
+       }                                                               \
+       (__fc_i);                                                       \
+})
+
+/**
+ * find_closest - locate the closest element in a sorted array
+ * @x: The reference value.
+ * @a: The array in which to look for the closest element. Must be sorted
+ *  in ascending order.
+ * @as: Size of 'a'.
+ *
+ * Returns the index of the element closest to 'x'.
+ */
+#define find_closest(x, a, as) __find_closest(x, a, as, <=)
+
+#endif